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Abstract—A hybrid electrical energy storage (HEES) system
consists of multiple banks of heterogeneous electrical energy
storage (EES) elements placed between a power source and
some load devices and providing charge storage and retrieval
functions. For an HEES system to perform its desired functions
of 1) reducing electricity costs by storing electricity obtained from
the power grid at off-peak times when its price is lower, for use
at peak times instead of electricity that must be bought then
at higher prices, and 2) alleviating problems, such as excessive
power fluctuation and undependable power supply, which are
associated with the use of large amounts of renewable energy
on the grid, appropriate charge management policies must be
developed in order to efficiently store and retrieve electrical
energy while attaining performance metrics that are close to
the respective best values across the constituent EES banks in
the HEES system. This paper is the first to formally describe
the global charge allocation problem in HEES systems, namely,
distributing a specified level of incoming power to a subset
of destination EES banks so that maximum charge allocation
efficiency is achieved. The problem is formulated as a mixed
integer nonlinear program with the objective function set to the
global charge allocation efficiency and the constraints capturing
key requirements and features of the system such as the energy
conservation law, power conversion losses in the chargers, the
rate capacity, and self-discharge effects in the EES elements.
A rigorous algorithm is provided to obtain near-optimal charge
allocation efficiency under a daily charge allocation schedule. A
photovoltaic array is used as an example of the power source
for the charge allocation process and a heuristic is provided to
predict the solar radiation level with a high accuracy. Simulation
results using this photovoltaic cell array and a representative
HEES system demonstrate up to 25% gain in the charge
allocation efficiency by employing the proposed algorithm.

Index Terms—Charge allocation, charge management, energy
efficiency, energy storage system (ESS), hybrid energy storage
system (HESS).
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I. Introduction

ELECTRICAL energy is a high-quality form of energy
[2] in the sense that 1) it can be easily and efficiently

converted to other forms of energy, and 2) it can be used to
control other (lower quality) forms of energy. However, elec-
tricity generation and consumption are typically not matched
with each other. From utility company’s perspective, storing
the excess energy avoids energy wastage and mitigates overin-
vestment in power generation facilities by shaving the power
demand during peak usage hours. Electrical energy storage
(EES) systems thus increase the availability of electrical en-
ergy, mitigate the supply-demand mismatches, and reduce the
generation capacity required to meet the peak power demand
[3]–[5]. From consumers’ perspective, storing energy obtained
from the grid or generated by local power generation sources
(such photovoltaic modules) during off-peak hours and using
the stored energy to reduce the usage of grid electricity during
peak hours can result in sizeable cost savings [6], [7].

Conventional EES systems are mainly homogeneous, i.e.,
they consist of a single type of EES element. Unfortunately,
none of the existing EES elements can satisfy all the de-
sired performance metrics such as high power and energy
density, low cost and weight per unit capacity, high round-
trip efficiency, and long cycle life. This limitation prevents
the adoption of a wide range of socially and economically
useful technologies, such as the widely adopted grid-scale EES
and electric vehicles (EVs). Hence, eliminating this limitation
of homogeneous EES systems is the primary motivation of
our paper. Hybrid electrical energy storage (HEES) systems
address this fundamental shortcoming of the conventional ho-
mogeneous EES systems using a collection of heterogeneous
EES elements that are suitably organized and accessed [8],
[9]. Each type of the EES elements has its unique strength
and weakness. The HEES system can exploit the strength of
each type of the EES element and achieve a combination
of performance metrics that is superior to that of any of
its individual EES components. Appropriate charge manage-
ment policies, including charge allocation, charge replacement,
charge migration, and bank reconfiguration, are designed ac-
cording to the source/load profiles and characteristics of the
HEES systems, in order to achieve the near-optimal overall
performance metrics [1], [10]–[16].

We start by introducing a generalized HEES architec-
ture comprised of two representative types of EES elements
(batteries and supercapacitors) connected by a charge transfer
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Fig. 1. Concept diagram of the HEES systems.

interconnect (CTI) and then build the corresponding elec-
trical circuit models for power converters, and battery and
supercapacitor banks. Next, we introduce the global charge
allocation (GCA) problem for an HEES system, i.e., how to
distribute the given source power supply to some selected
EES destination banks in the HEES system so that the GCA
efficiency1 is maximized. This efficiency is determined by the
characteristics of the selected banks and the magnitudes of the
charging currents, and the states of charge (SoCs) of the banks.
We consider the energy conservation and charge conservation
during the charge allocation process. In addition to the energy
pushed into all EES banks, we also take into account the power
dissipation on the internal resistances of battery banks and
supercapacitor banks, the power loss on chargers during the
power conversion process, the rate capacity effect in batteries,
and the self-discharge in supercapacitors.

The GCA problem may be decomposed into three
subproblems.

1) What is the optimal voltage level setting for the CTI?
2) Which EES bank(s) should be selected among all the

destination EES banks?
3) How should the charging current for each of the selected

destination EES banks be assigned?

The GCA efficiency depends on the profile of the power
source, magnitude of charging currents, and SoCs of each EES
banks. Since SoCs of EES banks and the amount of source
(input) power vary over time, and solutions to these three
questions are interdependent, our method is an online, iterative
approach. The charge allocation efficiency also depends on
detailed characteristics of the external power source. We adopt
a photovoltaic (PV) cell array as the incoming power source.
An accurate forecast of the PV power is extremely important
for us to develop for the GCA policy. We predict the solar
radiation level based on the history of solar irradiance levels
and the current observation.

1GCA efficiency is defined as the ratio between energy that is pushed into
all EES banks and the total energy provided by all the power sources, during
the whole charge allocation process for the EES system.

We formulate the GCA problem as a mixed-integer non-
linear programming (MINLP) problem, which unfortunately
cannot be optimally solved in polynomial time. We, therefore,
break the whole charge allocation process into a series of time
slots and at every decision epoch (which denotes the boundary
between consecutive time slots), we solve an instantaneous
charge allocation (ICA) problem, which seeks to optimize
the charge allocation efficiency at a specific instance of time.
The ICA problem is still an MINLP problem. However, we
can simplify the ICA problem, and subsequently develop an
effective way of solving the ICA problem in an iterative
manner, where in each iteration the optimization problem
is convex. We incorporate appropriate charging power limits
for the high-charging-efficiency EES banks to the problem
formulation to ensure that the charge allocation manager
considers the future energy generation profile, and thus avoid
greedy decisions that can result in significant future efficiency
degradation. The charging power limits are derived using the
Lagrange multiplier method to minimize the energy loss due
to the rate capacity effect and self-discharge. The near-optimal
solution of the original GCA problem is obtained by solving
the ICA problem with charging power upper limit for high-
charging-efficiency banks at every decision epoch throughout
the charge allocation process. We record the ICA solutions
to obtain the GCA solutions. Simulation results show that
the percentage improvement of energy harvesting ability from
various baseline setups ranges from 5% to 25% in general.

II. HEES Systems

A. Related Work

Considerable efforts have been invested in exploring the
optimal architecture of the HEES systems. A direct-parallel
connection of the battery and supercapacitor [17], [18] is
simple but has major weaknesses because the shared terminal
voltage of both sources must be kept same, which limits
the capacity utilization of the supercapacitor and disables the
active current distribution control. A cascade dc–dc converter
between the battery and supercapacitor [19] can isolate the
power sources and allow higher supercapacitor utilization.
However, this design is targeted to a predefined charge man-
agement scenario whereby the supercapacitor is used as a
battery buffer all the time. A more general architecture is
a dc bus with distributed converters [20], [21]. However,
the previous dc-bus architectures do not change the dc-bus
voltage, which prevents them from achieving a higher system
efficiency. The proposed HEES system resembles the dc-bus
topology, but employs optimal control of the dc-bus voltage
and does proper current distribution to each bank at run time.

Proper charge management on top of the hybrid EES
architecture will be crucial if the architecture has some degree
of freedom both at design and run times. A circuit model helps
derive a desirable capacity ratio between the battery and su-
percapacitor, based on the peak power [22]. The configuration
of a supercapacitor and the duty ratio as well as the pulse
frequency of the load profile were considered in optimizing
HEES performance in [23]. However, none of the previous
work has introduced a general HEES management because the
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Fig. 2. Architecture of the proposed HEES system.

previous HEES architectures are mostly dedicated to particular
operation scenarios. In contrast, this paper presents the general
form of the GCA problem, formulates it as a mathematical
programming problem, and provides a near-optimal solution.

B. Motivation of HEES Systems

A conceptual drawing of the proposed HEES systems is
depicted in Fig. 1. The system comprises of a number of
heterogeneous EES banks, connecting to CTI through dis-
tributed power converters (not displayed in the figure). As
we mentioned earlier, no existing EES elements fulfill all the
requirements of an ideal energy storage system such as low
capital cost, high cycle efficiency, long cycle life, low self-
discharge rate, and high power and energy densities. Therefore,
instead of relying on a single type of EES element technology,
HEES systems use multiple heterogeneous EES elements.

Different types of EES elements have distinct characteris-
tics. For example, a Li-ion battery bank has high energy capac-
ity, low self-discharge, stable open terminal voltage, and rela-
tive low cost, but suffers from a low rate capability. In contrast,
a supercapacitor bank has superior cycle efficiency, long cycle
life, and high capability capability, but small energy density
and high self-discharge rate. Therefore, heterogeneous EES
banks, with properly designed charge management policies,
can be used in a complementary manner to exploit the best
characteristics (strengths) of each type of EES element, while
hiding their weaknesses. The charge management policies
include charge allocation [1], charge migration [10], [13], [16],
charge replacement [12], and EES bank reconfiguration [11].

C. HEES System Architecture

Fig. 2 depicts the block diagram of the proposed HEES ar-
chitecture. All heterogeneous EES banks are connected to each
other via the CTI. An EES bank includes a set of homogeneous
EES elements and a bidirectional converter since a typical
EES element has a low voltage rating and a small energy
capacity. These EES elements are organized in an appropri-
ately constructed 2-D array using reconfigurable series and/or
parallel connections. The bidirectional converters control the
voltage and current when charging or discharging the EES
array since there is generally a voltage difference between the
CTI and the EES array. The bidirectional converters support
the following two operation modes: 1) voltage regulation
mode, the bidirectional converter generates a desirable output

Fig. 3. Schematic of the charge allocation process in an HEES system.

voltage regardless of the variation of the input power; and 2)
current regulation mode, the bidirectional converter generates a
desirable output current regardless of the variation of the input
power. We refer to it as a charger if the converter is in this
mode. The dc and ac power sources are connected to the HEES
system using the unidirectional converters that only allow
current flows onto the CTI. We use dc–dc converters and dc–
ac inverters for the load devices to maintain the compatibility
of the voltage levels between the CTI and load devices.

The charge management policies control the EES bank
reconfiguration, CTI connection, CTI voltage, and charging
currents/discharging current of each EES bank at each time in-
stance in order to achieve the best HEES system performance.
We control both the CTI voltage and charging/discharging
current of EES arrays using the following method. We operate
one converter in the voltage regulation mode to determine the
desirable CTI voltage and all other converters in the current
regulation mode. The output current for the voltage regulation
converter is automatically determined since the total current
flowing into CTI equals the total current flowing outward. This
control scheme ensures the stability of CTI voltage and bank
currents while we generate the software-level real-time tasks
to implement the high-level charge management policies.

D. Charge Allocation Problem Statement

Charge allocation policy is used to determine the most
suitable CTI voltage, a subset of EES banks, and the amount
of charging current for each selected EES bank, in order to
store the maximum amount of energy provided to the HEES
system from a given power source, i.e., PV cells, a windmill,
the power grid, and so on. The optimal charge allocation
policy depends on the energy generation profile, i.e., it ideally
distributes the incoming power at each time instance to the
selected destination banks and achieves the highest possible
GCA efficiency, which means that the maximum amount of
energy is pushed into the selected EES banks. Thus, the
prediction of the energy generation profile is important when
attempting to determine the optimal charge allocation policy.
Note that the charge allocation policy is also affected by the
accuracy of the load profile prediction. This problem, however,
falls outside the scope of this paper.
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TABLE I

Notation Used in Sections II and III-B

Notation
S full set of all EES banks in an HEES system
S′(t) selection set among all EES banks in an HEES system
SoCk(t) state of charge of the kth EES array
V OC

array,k(t) open-circuit voltage (OCV) of the kth EES array

V CC
array,k(t) closed-circuit voltage (CCV) of the kth EES array

Vcti(t) voltage level on the charge transfer interconnect
Vsrc(t) output voltage at the terminal of the power source
Pc,s(t) power loss in sth source-to-CTI charger
Pc,k(t) power loss in charging control charger in the kth EES

bank
Psd,k(t) power loss due to the self-discharge in the kth EES

bank
Ibank,k(t) bank charging current of the kth bank, seen at the

input of charger
Iarray,k(t) array charging current of the kth bank, seen at the

output of charger
Pwaste(t) excessive amount of input power that cannot be

allocated to any EES banks

Fig. 3 shows a conceptual diagram of the charge allocation
subsystem in an HEES system. Table I lists the important
notations used in the following text. The system contains N

heterogeneous EES banks, each of which consists of a number
of homogeneous EES elements. Each EES bank is connected
to the CTI through a charger. Supposing a charge allocation
process starts at time t = 0 and ends at time t = Ta, for all
t ∈ [0, Ta], a subset S′(t) ⊆ S is selected among the N EES
banks to receive energy from the power sources through the
CTI and the intervening chargers.

The source-to-CTI charger supports high voltage and current
levels and regulates the output voltage of the power source
Vsrc(t) to CTI voltage Vcti(t) through a feedback loop, sub-
jecting to a conversion power loss of Pc,s(t). The current
flows from the source, through the CTI, into (a selected set)
of chargers that connect the CTI and the destination EES
banks. Since Vcti(t) affects the conversion efficiency of the
power converters, choosing the optimal Vcti(t) is crucial for the
charge allocation problem. The kth charger converts the bank
charging current Ibank,k(t) to array charging current, Iarray,k(t),
with a power loss of Pc,k(t). Note that the open-circuit voltage
(OCV) of the kth EES array V OC

array,k(t) is normally used
when discussing the battery status; however, the closed-circuit
voltage CCV of the kth EES array V CC

array,k(t) is the voltage
that we should consider for the accompanying circuits. The
relationship between V OC

array,k(t) and V CC
array,k(t) will be discussed

in Section III-A. The self-discharge rate of the kth EES bank
Psd,k(t) also depends on the SoC and bank properties. In case
that the input power exceeds the maximum receiving capability
of the HEES system, the excess input power Pwaste(t) cannot
be stored and must be dumped to the ground (dissipated as
heat). A formal definition of the charge allocation efficiency
is presented in Section III-B.

III. Problem Formulation

A. System Models

Table II lists the important notations used in the following
text.

1) PV Model: The output power of the PV module Ppv

is mainly determined by the voltage and the current of the
PV module, Vpv and Ipv, the solar radiation level G, the

TABLE II

Notation Used in Sections III-B and IV

Notation
Ppv output power of the PV module, obtained using MPTT

technique [24]
Cb,full total charge of battery when it is fully charged
Cb remaining charge of a battery
γc Peukert constant of the battery for charging process
Ccap capacitance of supercapacitor banks
τ self-discharge time constant of the supercapacitor bank
xc binary indicator of the charger status (on/off)
Psrc(t) output power at the terminal of the power source
Pcti(t) power that is allocated from CTI to all EES banks
Pgain,k(t) rate of energy increase in the kth EES array
Ieq,k(t) equivalent charging current of the kth EES array,

accounting for the rate capability and is the rate at
which the remaining capacity of battery changes

Isd,k(t) self-discharge current in the kth EES array
ηGCA global charge allocation efficiency
ηICA instantaneous charge allocation efficiency
EHEES(t) energy stored in the HEES system, including all banks
Ek(t) energy stored in the kth EES bank

Fig. 4. Li-ion battery equivalent circuit model [30].

dark saturation current I0(T ), the panel series and parallel
resistances, Rs and Rp, the diode ideality factor A (which
is a measure of how closely the diode follows the ideal diode
equation), and the number of series-connected cells in that PV
module Ns. The output power level can be written as

Ppv = Vpv

(
IL(G) − I0(T )(e

(Vpv+IpvRs )q
ANsKT − 1) − Vpv + IpvRs

R

)
. (1)

In this paper, the PV module is used as the power source
and connected to the HEES system through the CTI. We apply
the maximum power transfer tracking (MPTT) [24] technique
to maximize the input power transferring from the PV module
to the CTI. We predict the solar radiation level G in (1) based
on the observation of solar radiation level in Los Angeles, CA
[25], while the other parameters are taken from [26].

2) Battery Bank: Battery banks have the advantages of
high energy capacity and low self-discharge, and therefore,
they are suitable for long-term storage purpose. The proposed
charge allocation framework and optimization technique are
general and can be applied to any type of battery banks so
far as we have accurate battery models. Intensive work has
been conducted to explore accurate and easy-to-use battery
models. The electrochemistry-based models [27], [28] are
accurate but too complicated to use in system-level design
and optimization. We thus rely on a circuit-based battery
model with good accuracy [29], [30] as we formulate the
charge allocation problem in a mathematical form. Fig. 5
demonstrates the model accuracy comparing the measured
Li-ion battery terminal voltage with simulation results from
the circuit model for a discharging process. We describe the
general properties of all the battery banks in this section, and
omit the bank index k for notational simplicity.
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Fig. 5. (a) Comparison of the circuit model simulation results with the
measured battery terminal voltage of two serial-connected 350 mAh Li-ion
batteries. (b) Conversion efficiency of an LTM4607 power converter.

Fig. 4 shows a charging process of a Li-ion battery, with
a runtime-based model on the left, and a circuit-based model
on the right for accurately capturing of the battery service life
and the I–V characteristics. In this model, the SoC is given by
SoC = Cb

/
Cb,full. In practice, ignoring the battery aging, we

derive Cb,full from the nominal capacity (usually characterized
in units of A·h) of the battery. The battery OCV is modeled as
a function depending on SoC. Other parameters, such as the
internal resistance and capacitance, are functions of SoC as
well. The functions are nonlinear and involve some empirical
parameters bij [31]

V OC = b11e
b12·SoC + b13(SoC)3 + b14(SoC)2 + b15SoC + b16

Rs = b21e
b22·SoC + b23, Rts = b31e

b32·SoC + b33

Cts = b41e
b42·SoC + b43 Rtl = b51e

b52·SoC + b53

Ctl = b61e
b62·SoC + b63. (2)

The rate capacity effect of batteries describes how the
available charge in a battery relates to the magnitude of the
discharging current [32]. Peukert’s law is an empirical relation
that accurately relates the discharging time and discharging
current to the change of the battery charge. This law is
described as �Cb = (Iarray)γd · t, where t is the discharging
time, and γd is the Peukert constant (1.05 and 1.3 depending on
the battery type). A similar relationship can be approximately
used for the charging process except that Peukert constant for
charging γc is less than 1. Thus, we have

Ieq = (Iarray)γc

SoC(t) = SoC(0) +
∫ t

0

(Ieq(τ) − Isd(τ))

Cb,full
· dτ (3)

where Ieq in (3) is the equivalent charging current inside the
kth EES array, considering the rate capacity effect. The Ieq

reflects the rate that a battery sends or receives charge. (3)
shows that the Iarray is a convex function of Ieq. Typically, Isd

is very small in batteries.
The OCV and CCV of a battery are generally not equal to

each other. Fig. 4 shows that the difference between them is
the voltage drop on the internal resistances Rs, Rts, and Rtl

V CC(t) = V OC(t) + Vtl(t) + Vts(t) + Iarray(t) · Rs. (4)

3) Supercapacitor Bank: The supercapacitor is another
representative EES element that has relatively lower energy
density, but superior cycle efficiency and much longer cycle
life compared to batteries. Thus, the supercapacitor banks
are commonly used to deal with the peak power demand or

Fig. 6. Circuit model of the buck–boost converter.

supply. The rate capacity effect is negligible in supercapacitor
and we have Iarray ≈ Ieq. The electrical circuit model for
the supercapacitor used in this paper contains a low series
resistance (∼25 m�) [31]. Therefore, the following relation
between V OC(t) and V CC(t) holds for the supercapacitors

V CC(t) = V OC(t) + Iarray(t) · Rseries. (5)

A fundamental disadvantage of the supercapacitor is the high
self-discharge rate compared with other EES elements. A
supercapacitor typically loses more than 20% of its stored
energy per day due to self-discharge [33]. The voltage decay
of a supercapacitor for a short time interval �t is given by

V OC(t + �t) = V OC(t) · e−�t/τ (6)

where τ is the self-discharge time constant. Using Taylor
expansion, the power loss rate due to self-discharge is given
by

Psd(t) = Ccap

(
V OC

array(t)
)2

τ
. (7)

4) Charger: We use a pulse width modulation (PWM)
buck–boost converter model as the charger model. The input
voltage, input current, output voltage, and output current of
the charger are denoted by Vin, Iin, Vout, and Iout, respectively.
A charger has two working modes: buck mode (if Vin > Vout)
and boost mode otherwise. When the charger is turned ON,
the power loss Pc of the charger consists of three components:
conduction loss Pcdct, switching loss Psw, and controller loss
Pctrl. The power loss of the charger is zero when the charger
is turned OFF. Note that Psw and Pctrl are nonzero and not
proportional to the output power. We adopt a binary indication
variable xc such that xc = 1 if the charger is turned ON, and
xc = 0 otherwise. Thus, Pc is given by

Pc = Pon
c · xc = (Pcdct + Psw + Pctrl) · xc. (8)

Fig. 6 shows a schematic of a PWM buck–boost converter.
It consists of four switching MOSFETs whose ON–OFF states
determine the operation mode of the converter. The power loss
components are mainly determined by the PWM duty ratio D

(less than 1), the maximum current ripple �I, the switching
frequency fs, the controller current Icontroller, the equivalent
series resistances RL and RC, and the turn-on resistance and
gate charge of the ith MOSFET switch, Rswi and Qswi. In the
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buck mode, we adopt the power loss model in [34] as follows:

D =
Vout

Vin
, �I = Vout

1 − D

Lf · fs

Pcdct = Iout
2 · (RL + D · Rsw1 + (1 − D) · Rsw2 + Rsw4)

+
(�I)2

12
· (RL + D · Rsw1 + (1 − D) · Rsw2 + Rsw4 + RC)

Psw = Vin · fs · (Qsw1 + Qsw2)

Pctrl = Vin · Icontroller. (9)

Note that in (9), the switching loss Psw and controller loss
Pctrl are independent of Iout. We derive the power loss in boost
mode based on the power loss in buck mode

D = 1 − Vin

Vout
, �I = Vin

D

Lf · fs

Pcdct =

(
Iout

1 − D
)2 · (RL + DRsw3 + (1 − D)Rsw4+Rsw1 + D(1 − D)RC)

+
(�I)2

12
· (RL+D · Rsw3+(1 − D) · Rsw4+Rsw1+(1 − D) · RC)

Psw = Vout · fs · (Qsw3+Qsw4)

Pctrl = Vin · Icontroller. (10)

We extract the model parameters based on LTM4607 [35]
converter and compare the simulated and measured conversion
efficiency in Fig. 5(a).

5) CTI: We assume that the CTI is an ideal conductor in
this paper. The American wire gauge data show that AWG
1 wire has 0.4066 m�/m. As the typical wire length in an
HEES system is in order of meters, the resistance is approxi-
mately ∼ 1 m�, which is negligible compared to the internal
resistance of the EES bank arrays (a single Li-ion battery
usually has internal resistance of 0.1∼0.2 �.) Furthermore,
the CTI inductance is even more negligible because the CTI
bus voltage changes very slowly. The CTI bus capacitance is
orders of magnitude smaller than the bank array capacitance.

B. Charge Allocation Optimization Problem Formulation

In this paper, we target the charge allocation problem of
an HEES system with an energy harvesting system, e.g., a
PV module. Fig. 3 shows the diagram of the system. The PV
module collects the solar energy and delivers the energy to
the HEES system. The charge allocation process starts at time
t = 0 and ends at time t = Ta. From the initial SoCs of all EES
banks, we determine the OCV of EES arrays V OC

array,k(0) for all
EES banks. We observe the solar radiation levels in the target
area and based on this predict the power generation profile of
the PV module over the charge allocation process.

The charge allocation process is managed by three sets of
control variables that should be optimally determined for the
highest global efficiency. The first one is CTI voltage Vcti(t),
which is maintained by the source-to-CTI charger. The second
one is the set of selected EES banks, S′(t) ∈ S. The third
set of variables is {Iarray,k(t)}, k ∈ S of all the EES banks,
which are tuned by the EES bank chargers. Note that an array
charging current can be set to 0, i.e., we turn off the charger
if we decide not to charge that EES bank. The solution of the
charge allocation problem consists of three parts: Vcti(t), S′(t),

and {Iarray,k(t)}, k ∈ S, t ∈ [0, Ta]. We formulate the GCA
as a mathematical programming problem, while the objective
function is the GCA efficiency and variables are the three
variables aforesaid.

We derive the constraints in the mathematical programming
problem based on the law of energy conservation. Electrical
energy is generated by PV and delivered to the CTI through
the source-to-CTI charger, where it is further distributed by se-
lected chargers to their corresponding destination EES banks.
Based on the law of energy conservation, the power supplied
by the power source Psrc(t) consists of Pc,s(t), Pwaste(t) and the
power delivered to CTI Pcti(t); thus, the energy conservation
for the CTI is given by

Psrc(t) = Vsrc(t) · Isrc(t) = Pc,s(t) + Pcti(t) + Pwaste(t)

= Pc,s(t) + Vcti(t)
N∑

k=1

Ibank,k(t) + Pwaste(t). (11)

For the kth charger, the output power equals the input power
minus the power loss during the conversion. Thus, the energy
conservation for the charger is given by

Vcti(t) · Ibank,k(t) = V CC
array,k(t) · Iarray,k(t) + Pc,k(t)

= V CC
array,k(t) · (

Ieq,k(t)
)1/γc +Pc,k(t). (12)

Pc,k(t) and Pc,s(t) in (11) and (12) can be derived using (8)–
(10) but with different sets of parameters.

We define the objective function as the GCA efficiency, or
equivalently, the total energy gain in all EES banks after the
charge allocation process, i.e., the integration of the power
pushed into all EES banks minus the leakage power as in (7).
Continuing the previous analysis, the energy increase rate in
the kth EES bank, denoted by Pgain,k(t), is given by

Pgain,k(t) = VOC
array,k(t) · Ieq,k(t) − Psd,k(t) (13)

d

dt
EHEES(t) =

N∑
k=1

Pgain,k(t) (14)

where the EHEES(t) is the the total energy stored in all HEES
banks. Note that the first term on the right-hand side (RHS)
in (13) corresponds to the power that is pushed into the kth
EES bank. Compared to the first term on the RHS in (12), we
exclude the power dissipation on the internal resistance of the
EES banks and the power loss due to the rate capacity effect
from the output power of the kth charger.

We formulate the GCA optimization problem as follows.
Given: Initial SoCs of all destination EES banks, SoC(t)|t=0,
∀k ∈ S; (historic) profile of the solar radiation; specifications
of the HEES system and the PV module; and duration of the
charge allocation process [0, Ta].
Find: Vcti(t), S′(t), and Iarray,k(t), ∀k ∈ S and ∀t ∈ [0, Ta].
Maximize: the GCA efficiency ηGCA, which is given by

ηGCA =

∑N
k=1

∫ Ta

0 Pgain,k(t)dt∫ Ta

0 Psrc(t)dt
(15)

or equivalently maximize the total energy increment in all the
destination EES banks at time Ta, given by the nominator term
in (15), since the denominator term in (15) is fixed.
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Subject to: 1) Lower and upper bound of the array charging
currents

0 ≤ Ieq,k(t) ≤ Imax,k, ∀t ∈ [0, Ta], ∀k ∈ S. (16)

2) Maximum energy storage constraint

Ek(0) +
∫ t

0
Pgain,k(τ)dτ ≤ Emax,k, ∀t ∈ [0, Ta] (17)

where Ek(0) stands for the initial energy stored in the kth bank
at the beginning of the charge allocation process.
3) The conservation of energy given by (11) and (12).
4) The conservation of charge given by (3).

Although {Iarray,k(t)} is the set of variables that we can
control using the chargers, we use {Ieq,k(t)} as the optimization
variables instead in the formulation because of the conve-
nience in solving the optimization problem. We determine
{Iarray,k(t)} from solved {Ieq,k(t)} according to (3). In addition,
the GCA optimization problem is an MINLP problem due to
the existence of binary variables {xc,k(t)}. Therefore, the GCA
optimization problem is NP-complete and cannot be optimally
solved in polynomial time. We provide an approximation algo-
rithm to obtain the near-optimal solution of the GCA problem.

IV. Methodology

Before solving the GCA problem, we first consider the
ICA problem, which aims to optimize the charge allocation
efficiency at a specific time instance. We present an algorithm
to solve the ICA problem and derive a near-optimal solution.
Subsequently, we break the whole charge allocation process
into a series of time slots and solve one ICA problem at
each decision epoch. However, a simple combination of the
ICA solutions at each decision epoch is a greedy decision,
which may not achieve the global optima due to the lack of
consideration of SoC changes in the EES banks, especially
those banks that have small energy capacity and high charging
efficiency.2 To overcome this issue, we incorporate an upper
bound on the total charging power of the high-charging-
efficiency banks.

The rest of this section is organized as follows. We
first present the heuristic for predicting the solar power in
Section IV-A. Then, we elaborate the near-optimal ICA solver
and the heuristic for deriving the charging power limits in
Sections IV-B and IV-C, respectively. Finally, we solve the
GCA problem as a time series of solutions to the constrained
ICA problems. Table III lists the important notations used in
the following text.

A. Solar Irradiance Level Prediction

Accurate online solar irradiance forecast, which provides
the clue of future power generation, is extremely important
in developing the GCA algorithm since the optimal GCA
policy depends on the power generation profile. We break the
daily observation of solar irradiance level into M time slots

2We classify all EES banks into two groups: high-charging-efficiency banks
(e.g., supercapacitor banks) and low-charging-efficiency banks (e.g., battery
banks) according to their properties.

TABLE III

Notation Used in Section IV

Notation
dn, tm at the tmth time slot in the dnth day
Cs(dn, tm) clear sky solar irradiance level (W/m2)
Rs(dn, tm) observed solar irradiance level (W/m2)
ξc(dn, tm) climate condition factor, typically less than 1
γ(tm) screening factor to judge whether the solar irradiance

is affected by the climate conditions
Pds(dn, tm) predicted solar irradiance level (W/m2)
P

up
SB(tm) upper limit for the charging power of all

supercapacitor banks
ESB the energy stored in all supercapacitor banks
EBB the energy stored in all battery banks

(0, t1, t2, ..., tM). We consider two factors in order to accurately
predict the solar irradiance: clear sky solar irradiance level
Cs(dn, tm) (i.e., solar irradiance in a sunny day), which stands
for the maximum solar irradiance level without any decay
due to the climate conditions, and climate condition factor
ξc(dn, tm), which takes into account the decay factor caused
by climate conditions, such as rain, cloud, and so on. We set
each time slot to be 10–15 min so that the solar irradiance level
and climate conditions are approximately unchanged within a
time slot.

We consider that the climate conditions have an approxi-
mately linear decaying effect on the solar irradiance levels.
To obtain the predicted solar irradiance level Pds(dn, tm), we
multiply the climate condition factor at previous time instance
ξc(dn, tm−1) to Cs(dn, tm). At the end of the tmth time instance,
we observe the solar irradiance level Rs(dn, tm) and calculate
ξc(dn, tm) as relative ratio between Rs(dn, tm) and Cs(dn, tm)

Pds(dn, tm) = Cs(dn, tm) · ξc(dn, tm−1)

ξc(dn, tm) =
Rs(dn, tm)

Cs(dn, tm)
. (18)

Although Cs(dn, tm) varies with the location on the earth
and the time of the year, it is predictable based on the
observation history of solar irradiance levels [36]. We adopt
exponential smoothing, which is a powerful technique that
is applied to sequential data to make forecasts by assigning
exponentially decreasing weights over time [6]. This weighting
method makes exponential smoothing particularly effective
in our problem since Cs(dn, tm) is more related to the solar
irradiance in recent past rather than earlier past. We observe
Rs(dn, tm) and update Cs(dn, tm) using a smoothing factor α,
which ranges between 0 and 1. The Cs(dn, tm) is given by

Cs(d1, tm) = 0,

Cs(dn+1, tm) = Cs(dn, tm), if Rs(dn, tm) < λ(tm)Cs(dn, tm)

Cs(dn+1, tm) = α · Cs(dn, tm)+(1−α) · Rs(dn, tm), otherwise.

(19)

Since Cs(dn, tm) denotes the clear sky solar irradiance level,
we use λ(tm) as a screening factor to prune the solar irradiance
data that severely degrade due to the climate conditions in (19)
and only update Cs(dn, tm) using those data that are collected
in sunny days. More precisely, if Rs(dn, tm) < λ(tm)·Cs(dn, tm),
we consider it to be not under clear sky condition, and
thereby directly carry Cs(dn, tm) to the next time instance.
We determine λ(tm) based on an online learning approach,
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where the state set is defined as the set of time slots {tm}, the
action set is defined as a set of different reasonable screening
factors (λ1, λ2, ..., λK) (i.e., 0.7–1). Selecting different λk ends
up with different Cs(dn+1, tm) and in turn affects the predictions
later on. The prediction error is captured by the penalty
function Errorm. We adopt Q-learning and update the state–
action pair Q(tm, λk) using a learning rate β

Errorm = |Pds(dn, tm) − Rs(dn, tm)|
Q(tm, λk) ← (1 − β) · Q(tm, λk) + β · Errorm. (20)

We pick the screening factor λk according to the probability

of
exp(−Q(tm, λk))∑K
k=1 exp(−Q(tm, λk))

.

B. ICA Solver

The ICA optimization problem maximizes the total power
that is pushed into all EES banks at a specific time instance.
The ICA problem is a special case of the GCA problem when
Ta → 0. The control variables to be solved in the ICA problem
are similar to GCA problem, except that they are only for one
time instance. Thus, we omit t for simplicity in writing. We
define the objective function ICA efficiency ηICA as

ηICA =
1

Psrc

N∑
k=1

Pgain,k (21)

where the Psrc is a fixed value and do not affect the optimiza-
tion. We apply similar constraints (11) and (12) to the ICA
problem. Therefore, the ICA optimization problem is again an
MINLP problem. We utilize three facts to simplify the orig-
inal ICA problem to optimal charging current determination
(OCCD) problem, which is a convex optimization problem.
The three facts are as follows.

1) The optimal ICA efficiency ηICA is approximately an uni-
modal function with respect to the CTI voltage Vcti. Therefore,
we perform a ternary search3 in the feasible region of Vcti as
the outer loop. Inside the outer loop, we consider the CTI
voltage Vcti as a fixed value and solve the OCCD problem.
More precisely, we do not treat Vcti as an variable in OCCD
problem; otherwise, solving the {Ieq,k} becomes impractical
because the power loss in the charger (8)–(10) is a function
of both {Ieq,k} and the CTI voltage.

2) It will be beneficial to turn off some EES banks if their
optimal {Ieq,k} are smaller than a threshold value Ith. The
charger power loss contains a fixed part and a part proportional
to the output charging current. It is not worthwhile to keep the
charger ON when the output charging current is small. The
binary indicators {xc,k} that denote the charger status lead to
the discontinuity in optimization problem. To overcome this
issue, we maintain a selection set S′, which is a subset of S,
and only consider Ieq,k, k ∈ S′ in the OCCD problem, i.e.,
xc,k = 1, k ∈ S′. For other EES banks that are not in S′, we
set Ieq,k = 0, xc,k = 0, k /∈ S′. In this way, the OCCD problem
becomes a continuous mathematical programming problem.

3A ternary search is a divide and conquer-based algorithm that determines
either that the minimum or maximum cannot be in the first third of the
domain or that it cannot be in the last third of the domain, then repeats
on the remaining two-thirds.

Algorithm 1: ICA solver (ICAS)
Input: The initial SoCk, ∀k ∈ S, the input power Psrc and Vsrc, the feasible region

of CTI voltage (Vcti,min, Vcti,max), and predefined parameters ε, Ith , �Vth .
Determine the OCVs V OC

array,k , ∀k ∈ S based on SoCs;1
repeat2

for V
(1)
cti = 1

3 Vcti,min + 2
3 Vcti, max , and V

(2)
cti = 2

3 Vcti, min + 1
3 Vcti,max , do3

i ← 0;4
Initialize S′ (0) ← S;5
Initialize V

CC,(0)
array,k ← V OC

array,k , ∀k ∈ S′ (0);6
repeat7

i ← i + 1, S′ (i) ← S′ (i−1);8
Solve the OCCD problem with fixed Vcti , S′ (i−1) and V

CC,(i−1)
array,k ,9

∀k ∈ S′ (i−1), find the optimal {I(i)
eq,k, k ∈ S′ (i−1)};

∀k ∈ S′ (i−1), if I
(i)
eq,k < Ith , then10

I
(i)
eq, k ← 0 and S′ (i) ← S′ (i)\k11

Calculate {I(i)
array,k , update V

CC, (i)
array,k , ∀k ∈ S′ (i) using (3)–(5)12

until max
k∈S′ (i)

∣
∣V CC, (i)

array,k − V
CC,(i−1)
array,k

∣
∣ < ε and S′ (i) = S′ (i−1) ;13

Calculate ηICA(Vcti), using (21);14

if ηICA
(
V

(1)
cti

)
< ηICA

(
V

(2)
cti

)
, then15

Vcti,min ← 1
3 Vcti,min + 2

3 Vcti,max16

else17
Vcti,max ← 2

3 Vcti,min + 1
3 · Vcti,max18

until |Vcti,max − Vcti,min| < �Vth ;19
Vcti ← 1

2 (Vcti,min + Vcti,max)20
return Vcti , S′ (i), and I

(i)
eq,k , ∀k ∈ S21

For each fixed Vcti, we first initialize S′ to be the full set of
all EES banks and remove those EES banks whose Ieq,k is
smaller than Ith. We repeat solving the OCCD problem until
the selection set S′ converge.

3) In general, the CCVs are not very different from OCVs
since the internal resistances are not large, according to (4) and
(5). The objective function is a complicated nonlinear function
of {Ieq,k} since both the CCVs and {Iarray,k} are involved in
the charger’s power loss. To address this issue, we use fixed
CCVs {VCC

array,k} in the OCCD problem instead of functions of
{Iarray,k}. After solving the OCCD, we obtain the {Ieq,k} and
update VCC

array,k using (3)–(5). We repeat solving the OCCD
problem until the VCC

array,k, ∀k ∈ S′ converge.
The proposed ICAS algorithm is summarized in

Algorithm 1. We do ternary search of Vcti in the outer
loop, while in the inner loop, we solve the OCCD problem
repeatedly at a fixed Vcti and update the selection set S′ as
well as the CCV voltages {V CC

array,k}. The OCCD problem has
a concave objective function (21) to be maximized, subjecting
to linear inequality constraints (16) and convex inequality
constraints (11) and (12). Thus, the OCCD problem is a
convex optimization problem and can be solved optimally
in polynomial time using the standard convex optimization
technique. We carefully set the threshold current Ith such
that turning OFF the charger when the Ieq,k < Ith always
improves the charge allocation efficiency. Fig. 5(b) shows that
when Ieq,k < 0.05 A, the conversion efficiency of the charger
becomes unacceptably low. Thus, we set Ith to be 0.05 A.
The inner loop in Algorithm 1 is terminated when S′ and
{V CC

array,k} converge, where the optimal ηICA at a specific Vcti

is achieved. We search the Vcti domain and repeat the inner
loop subroutine for different Vcti until a termination condition
is met, i.e., the difference between the upper and lower
bounds of the Vcti domain falls within a predefined threshold
�Vth.
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Fig. 7. Comparison of ICA efficiency ηICA at different CTI voltages Vcti
obtained by the proposed method (solid curve) and MC simulation (cross
marks).

Fig. 7 shows ηICA versus the Vcti for a four-bank HEES
system. The solid curve shows that the ηICA solved at each
fixed Vcti is an unimodal function of Vcti. Thus, we converge
to the near-optimal solution (displayed as a circle) by ternary
searching the Vcti domain. The empty space in Fig. 7 below
the solid curved is caused by the discontinuity of the {xc,k}.
The Monte Carlo (MC) simulation results (displayed as cross
marks) shows that the proposed method always achieves better
solutions than the MC simulation.

C. Power Limit Derivation

The ICAS algorithm presented in Section IV-B solves the
ICA problems near-optimally and returns the corresponding
EES bank selection, CTI voltage, and EES array charging
currents. A straightforward way to solve the GCA problem
is to follow a greedy approach, i.e., breaking the whole
charge allocation process into a series of consecutive time
slots (0, t1, t2, ..., tM) and solving an ICA problem at the
beginning of each time slot, with the approximation that the
SoC stays unchanged over the time slot. However, such an
greedy approach does not consider the EES bank capacity,
and thereby may not lead to the optimal results, e.g., simply
assigning a large amount of power to high-charging-efficiency
banks. As shown in Fig. 1, supercapacitor banks usually
have high charging efficiency thanks to their high power
capacity and small internal resistance, while their energy
capacity is very limited. Therefore, the greedy GCA approach
may fully charge the supercapacitor banks very quickly and
then assign all power to battery banks during the rest of
the charge allocation process. In such a case, the GCA
efficiency may be unacceptably low due to the following two
reasons.

1) The power loss due to the rate capacity effect in the
battery banks increases superlinearly as the array charging
current increases, according to Peukert’s law. The greedy
approach may charge the battery banks with high rates after
all supercapacitor banks are full. Thus, the HEES system
suffers a significant power loss that prevents it from reaching
the global optimality.

2) The other reason that makes the greedy approach even
worse is the self-discharge of the supercapacitor banks. The
self-discharge power rate grows quadratically as the OCV of
the supercapacitor bank increases, according to (7). Thus, the
high leakage rate degrades the GCA efficiency if we charge
the supercapacitor banks quickly and leave them at high SoC
state for the rest of charge allocation process.

Due to these reasons, we modify the original ICAS to make
it aware of the future energy generation. More precisely, we
impose an upper limit for the total charging power of all the
supercapacitor banks, P

up
SB(tm), to prevent rapid charging of

supercapacitor banks, leaving some capacity for the remaining
charge allocation process to combat the rate capacity effect and
alleviate the power loss due to the self-discharge. A low power
limit may undercharge the supercapacitor banks and result in
low GCA efficiency, since the supercapacitor banks typically
have high charging efficiency. Furthermore, the power limit
should also consider the power generation. For example, the
power limit should be relatively high during the peak period of
the power supply in order to allow more power to be assigned
to the supercapacitor banks. An effective heuristic of setting
the appropriate power limits to achieve the near-optimal GCA
efficiency is to charge the supercapacitor banks such that they
are fully charged at the end of the charge allocation process.

Since supercapacitor banks typically have higher charging
efficiency, the ICAS intends to assign full P

up
SB(tm) amount

of power to them. Therefore, the energy assigned to all
supercapacitor banks (ESB) and battery banks (EBB) over the
whole charge allocation process are approximately given by

ESB =
M∑

m=1

∫ tm

tm−1

P
up
SB(tm)dt,

EBB =
M∑

m=1

∫ tm

tm−1

(
Psrc(tm) − P

up
SB(tm)

)
dt. (22)

According to (6) and (7), we conclude that the ratio between
energy loss due to self-discharge and the total energy is fixed
and given by μsd = ESB(t + �t)/ESB(t) = e−2�t/τ , where �t is
the duration of a time slot and μsd < 1 is the ratio of remaining
energy after one time slot. Therefore, the total energy loss due
to the self-discharge Esd is approximately given by

Esd = ESB −
M∑

m=1

∫ tm

tm−1

(1 − μsd)(M−m+1)P
up
SB(tm)dt. (23)

We denote the part of the energy assigned to all the battery
banks but wasted due to the rate capacity effect by Erb. For
derivation simplicity, we approximately treat all battery banks
as a big equivalent battery with an equivalent Peukert constant
γeq < 1. Thus, Erb is given by

Erb = EBB −
M∑

m=1

∫ tm

tm−1

(
Psrc(tm) − P

up
SB(tm)

)γeq
dt. (24)

We determine the parameter γeq in (24) by fitting the energy
loss due to rate capacity effect of all battery banks. The
power limit is constrained by the energy capacity of all the
supercapacitor banks. This helps us to express the energy loss
due to the self-discharge and rate capacity effect as convex
functions of {Pup

SB(tm)}. The derivation of power limit becomes
an optimization problem as follows:

Minimize: Erb + Esd, (25)

Subject to: maximum energy constraint for SB,
M∑

m=1

∫ tm

tm−1

P
up
SB(tm)dt ≤ 1

2

∑
k∈SB

Ccap,k · (V 2
max,k − (V OC

array,k)2) (26)
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where Vmax,k is the maximum voltage of the supercapacitor
bank and V OC

array,k is the current OCVs. Equation (25) is a
convex function and (26) is a linear constraint. Thus, we solve
the optimization problem (25) using Lagrange multiplier and
achieve the optimal set of {Pup

SB(tm)} over all time slots. The
source power information that is required in (22)–(25) comes
from the solar irradiance level prediction in Section IV-A. The
power upper limit may change due to the variation of the
climate condition. We determine this limit at every time slot
according to the latest information of climate conditions and
remaining capacity of the supercapacitor banks.

D. GCA Solver

In this section, we present the GCA solver with charging
power limits (SCPL) for the GCA problem, integrating so-
lar irradiance level prediction, power limits derivation, and
modified ICAS alternately. The original ICAS finds the near-
optimal solution of the ICA problem by iteratively solving
OCCD problem and updating the CCVs and EES banks
selection set. We modify the original ICA problem to con-
strained ICA problem by introducing a new constraint for the
supercapacitor banks as follows:

Vcti(t) ·
∑
k∈SB

Ibank,k(t) ≤ P
up
SB(tm), ∀t ∈ [tm−1, tm]. (27)

Since (27) is a convex inequality constraint, the OCCD in
constrained ICA problem is still a convex optimization prob-
lem. We propose the SCPL algorithm as follows. We first
break the whole charge allocation process into a series of short
time slots (0, t1, t2, ..., tM). For each time slot, we observe the
current solar irradiance level, make prediction of the solar
irradiance level over the rest time of the day, derive the
power upper limits for the supercapacitor banks, and solve the
constrained ICA problem. The SCPL algorithm is summarized
as Algorithm 2. The SCPL algorithm solves the GCA problems
and derives the CTI voltage setting Vcti(t), selected set of the
EES banks S′(t), and the array charging currents {Iarray,k(t)}
for the selected EES banks over the whole charge allocation
process. Our claim that the proposed algorithm returns a near-
optimal solution of the GCA problem is based on the above
flow in which each subproblem is solved near-optimally.

E. Temperature, Aging, and Malfunction Handling

The optimal management policy of the HEES should ac-
count for the effect of temperature. Intensive research has
been conducted to study the battery behaviors at various
temperatures. It turns that the cycling capacity, i.e., battery
charge Cb,full, only varies slightly (less than 5%) from 25 °C
to 60 °C [37], [38]. The internal resistance of the battery does
not vary much (∼ 10%) either with the temperature rising [37].
Therefore, we ignore the temperature effect in the proposed
SCPL algorithm. The GCA problem only solves the allocation
problem for one charging process and does not involve cycling.

The batteries age as the HEES system is being operated,
which causes capacity fading and the increase of internal
resistance. Some known factors, such as the depth of discharge
and average SoC significantly affect the battery aging. Thus,

Algorithm 2: GCA solver with charging power limits
(SCPL)

Input: The specifications of the HEES system and PV module; initial SoCk,
∀k ∈ S; duration of charge allocation process [0, Ta] on the dnth day;
observation history of previous solar irradiance level, Cs(dn−1, tm),
m ∈ [1, 2, ..., M].

Break [0, Ta] into M time slots (0, t1, t2, ..., tM );1
for (m ← 1;m ≤ M; m + +) do2

Observe Rs(dn, tm);3
Update Cs(dn, tm) using (19) and (20);4
Calculate ξc(dn, tm) ← Rs (dn,tm )

Cs (dn,tm )5
Predict Pds(dn, tk), ∀k > m, using (18);6
Calculate the remaining capacity in supercapacitor banks;7
Derive the P

up
SB(tm) according to remaining capacity in supercapacitor banks8

and Pds(dn, tk), m < k ≤ M, using (22)–(25);
Perform modified ICAS with power limit P

up
SB(tm) and find Vcti(t), S′(t), and9

Ieq,k(t), ∀k ∈ S, t ∈ [tm−1, tm];
Calculate Iarray,k(t) based on Ieq,k(t), ∀k ∈ S;10
Update SoCs and OCVs of all EES banks, using (2) and (3);11

return Vcti(t), S′(t), and Iarray,k(t), ∀k ∈ S, t ∈ [0, Ta]12

we perform Coulomb counting for each EES bank, calculate
the state of health (SoH) degradation, and update model
parameters according to the SoH degradation. In fact, a high
temperature significantly speeds up the battery aging. We
record the battery temperature so that we can accurately update
the characteristics of the aged battery including the battery
capacity and internal resistances [39], [40].

In practice, a part of EES elements may have malfunction
during runtime. We address this issue at the bank level and
system level. A more elaborated dynamic bank reconfiguration
[11] improves fine-granularity fault tolerance of the EES
bank, which is a bank-level method. We simply exclude the
unavailable banks from the set of available EES banks at the
system level. We update bank set S at the beginning of each
decision epoch and perform the proposed method because the
GCA problem is solved in a discrete time manner.

V. Simulation Results

We consider two different HEES systems: one consists of
four EES banks (two supercapacitor banks and two battery
banks), and the other consists of eight EES banks (four
supercapacitor banks and four battery banks.) We use the solar
irradiance level data that are collected in Los Angeles for year
2011 [25] and use PV modules with MPTT technique [24] as
the power source. We consider the charge allocation process
lasting for 12 h and solve corresponding GCA problems using
the proposed GCA algorithm for both HEES systems. We
extract the model parameters of chargers, Li-ion batteries,
and supercapacitors through real measurements based on the
Linear Technology LTM4607 converter [35], the GP1051L35
Li-ion battery cells [41], and the Maxwell BCAP P270 series
supercapacitor [42].

The baseline setups in the simulation include: 1) unbiased
bank charging (UB), the input power is uniformly allocated
into all EES banks; 2) battery banks first policy (BBF),
the input power is allocated into all battery banks; and 3)
supercapacitor banks first scheme (SBF), the input power
is allocated into all supercapacitor banks. The BBF policy
ignores the supercapacitor banks and is used to mimic the
homogeneous battery-only EES systems. Note that the SBF
policy switches to BBF if all supercapacitor banks are fully
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Fig. 8. Outcomes of the proposed solar irradiance level predictor at 8 AM,
10 AM, and 12 AM. The four groups from top to bottom are the average
solar irradiance levels for July, April, September, and December, respectively.

Fig. 9. Comparisons of the GCA with the proposed solar prediction method
and Oracle system for (a) four-bank HEES system and (b) eight-bank HEES
system.

charged. We use a constant CTI voltage for the baseline setups
during the whole charge allocation process. We operate the
baseline systems at several representative CTI voltage values
and compare the results with that of the proposed SCPL
algorithm. We investigate different solar irradiance levels in a
year (April, July, September, and December) and PV module
configurations4 (4×2, 2×4, 4×4, 4×6 for four-bank HEES
system and 4 × 2, 4 × 4, 4 × 6, 6 × 6 for eight-bank HEES
system), with 16 test cases in total for each HEES system.

A. Solar Irradiance Level Prediction

Fig. 8 shows the monthly average solar irradiance level
prediction using the proposed online prediction method at
three time instances: 8 AM, 10 AM, and 12 AM in April,
July, September, and December. We predict the solar irradiance
level for the remaining charge allocation process at each time
instance. The average error of the proposed prediction heuristic
is less than 10%.

Fig. 9 compares the total energy gain in HEES systems
for all the 16 test cases between the SCPL algorithm using

4For a PV module with configuration of n×m, n and m denote the number
of series- and parallel-connected PV cells, respectively.

Fig. 10. Power limit for supercapacitor banks (SBs) that is derived from the
proposed heuristic. The data are generated using the eight-bank HEES system
with the 4×6 PV module. Simulated using solar data in Los Angeles in July.

proposed solar irradiance prediction and the SCPL algorithm
using Oracle system.5 The results in Fig. 9 show that the
performance degradation of the proposed SCPL algorithm due
to the misprediction is within 2%.

B. Power Limit Derivation

Fig. 10 shows the power limit that is derived from the
proposed heuristic for the eight-bank HEES system and 4 × 6
PV module, using solar irradiance data in July. The line with
circle marks is the power limits of the supercapacitor banks
and the line with cross marks is the power that is allocated
to the battery banks. We use the supercapacitor banks to
shave the peak of the power generation profile in order to
alleviate the energy loss due to rate capacity effect. Although
the average duration with effective solar irradiance is about
12 h, we only use the supercapacitor banks from about 8
AM to 4 PM, depending on the predicted solar irradiance
level and when the power generation peak happens. Since
the self-discharge rate is larger when the supercapacitor banks
have higher SoCs, the proposed heuristic tends to assign more
energy to supercapacitor banks in later part of the charge
allocation process. Therefore, the line with cross mark has
negative slope as shown in Fig. 10. The value of power limit
depends on the relative magnitude between power generation
rate, capacities of battery banks and supercapacitor banks.

C. GCA Problem

We set the initial OCVs of battery banks and supercapacitor
banks as 7.4 and 3.0 V, respectively, for the four-bank HEES
system. The eight-bank HEES system has the initial OCVs
of battery banks of 7.4, 7.4, 3.7, and 3.7 V, respectively, and
a 3.0 V initial OCVs for all the supercapacitor banks. The
battery banks have large enough capacity to accommodate
all the energy generated from the PV modules, while the
supercapacitor banks do not. Although the PV configuration
is known, the power generated in PV module is not fixed but
depends on Vcti in our problem setup since we apply MPTT.
Therefore, to have fair comparisons, we use total energy gain
after the charge allocation process as the measure of solution
quality, i.e., the nominator in (15). We normalize the total
energy gain of the baseline systems to the results of the
proposed SCPL algorithm in Tables IV and V.

5The Oracle system has the perfect knowledge of the solar irradiance over
the remaining charge allocation process
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TABLE IV

Comparison of Normalized GCA Results After a 12 h Charge Allocation Process for the Four-Bank HEES System

Baseline
Case n × m Month SCPL UB SBF BBF

5 V 8 V 12 V 5 V 8 V 12 V 5 V 8 V 12 V
1 Apr 100.0% 84.7% 89.3% 88.5% 82.1% 92.1% 95.7% 65.0% 68.7% 68.4%
2 Jul 100.0% 83.1% 88.7% 88.8% 80.8% 91.9% 95.0% 61.6% 65.9% 65.8%
3 4 × 2 Sep 100.0% 87.9% 91.8% 90.1% 85.1% 94.3% 97.1% 69.8% 73.2% 72.6%
4 Dec 100.0% 92.8% 94.4% 89.9% 89.9% 96.7% 96.9% 79.1% 81.4% 80.0%
5 Apr 100.0% 87.5% 92.3% 89.1% 84.9% 95.2% 96.3% 67.1% 71.0% 69.4%
6 Jul 100.0% 85.6% 91.4% 88.9% 83.3% 94.4% 95.6% 63.4% 67.8% 66.4%
7 2 × 4 Sep 100.0% 89.3% 93.3% 89.3% 86.4% 95.8% 96.3% 70.8% 74.3% 72.5%
8 Dec 100.0% 93.6% 95.3% 88.9% 90.6% 97.7% 96.0% 79.7% 82.0% 79.5%
9 Apr 100.0% 82.8% 92.4% 95.1% 74.7% 83.5% 86.5% 53.8% 61.2% 60.4%
10 Jul 100.0% 85.4% 96.4% 98.5% 71.8% 81.4% 83.8% 53.6% 62.0% 61.3%
11 4 × 4 Sep 100.0% 82.0% 90.3% 92.3% 77.9% 86.4% 88.2% 55.1% 61.7% 61.1%
12 Dec 100.0% 81.7% 87.4% 87.4% 80.3% 91.5% 95.9% 58.7% 63.0% 63.0%
13 Apr 100.0% 88.1% 95.8% 97.3% 71.1% 81.6% 82.5% 52.3% 61.5% 61.5%
14 Jul 100.0% 86.7% 94.7% 96.6% 69.2% 79.4% 82.3% 53.2% 63.2% 63.8%
15 4 × 6 Sep 100.0% 86.0% 96.6% 98.8% 72.6% 82.5% 85.4% 52.4% 60.9% 60.5%
16 Dec 100.0% 78.6% 87.0% 89.0% 77.9% 87.1% 89.4% 51.2% 57.7% 57.0%

TABLE V

Comparison of Normalized GCA Results After a 12 h Charge Allocation Process for the Eight-Bank HEES System

Baseline
Case n × m Month SCPL UB SBF BBF

5 V 8 V 12 V 5 V 8 V 12 V 5 V 8 V 12 V
1 Apr 100.0% 91.0% 92.7% 86.9% 88.5% 95.5% 95.6% 83.7% 86.1% 84.3%
2 Jul 100.0% 90.1% 93.1% 88.8% 86.6% 94.9% 96.2% 80.5% 83.1% 81.9%
3 4 × 2 Sep 100.0% 91.5% 92.1% 84.5% 89.7% 95.8% 94.7% 87.1% 88.8% 86.3%
4 Dec 100.0% 92.1% 88.5% 76.3% 92.9% 96.0% 91.2% 93.7% 93.8% 89.1%
5 Apr 100.0% 82.3% 88.7% 88.8% 79.3% 91.4% 96.1% 63.9% 68.6% 68.8%
6 Jul 100.0% 80.4% 87.9% 89.0% 78.2% 91.1% 95.9% 60.5% 65.7% 66.2%
7 4 × 4 Sep 100.0% 84.5% 90.1% 89.2% 81.6% 92.4% 96.2% 67.8% 72.1% 72.0%
8 Dec 100.0% 88.9% 92.1% 88.1% 86.0% 94.3% 95.2% 76.3% 79.5% 78.6%
9 Apr 100.0% 79.1% 88.4% 90.9% 77.4% 87.8% 91.5% 56.0% 62.1% 62.8%

10 Jul 100.0% 78.2% 88.8% 92.3% 73.4% 79.7% 81.7% 53.7% 61.3% 61.3%
11 4 × 6 Sep 100.0% 79.1% 87.2% 88.9% 77.4% 90.4% 95.2% 57.8% 63.3% 63.9%
12 Dec 100.0% 84.4% 90.3% 89.6% 81.9% 93.2% 96.9% 65.8% 70.3% 70.4%
13 Apr 100.0% 79.3% 92.2% 97.2% 71.0% 81.2% 84.3% 51.3% 60.1% 60.1%
14 Jul 100.0% 82.0% 94.6% 97.7% 68.4% 82.3% 85.4% 51.4% 61.1% 61.4%
15 6 × 6 Sep 100.0% 77.9% 89.3% 93.3% 73.0% 83.4% 87.1% 51.9% 60.3% 59.9%
16 Dec 100.0% 77.7% 86.1% 87.9% 76.6% 90.7% 97.3% 55.2% 60.7% 61.5%

Tables IV and V summarize the GCA results of the pro-
posed SCPL algorithm and the selected baseline systems.
The proposed SCPL algorithm consistently outperforms the
baseline systems by approximately 5% to 25% in general.
Most importantly, the HEES system using the proposed SCPL
algorithm improves the energy harvesting ability by up to 48%
compared to the BBF policy, which ignores the supercapacitor
banks. This explains the poor performance of a homogeneous
EES system of the same battery banks.

Tables IV and V show that the SBF policy generally
performs well with a smaller number of PV modules, e.g.,
configuration of 4×2 or 2×4, or lower solar irradiance level,
e.g., in December. In this case, the supercapacitor banks have
enough capacity to accommodate all energy generated by
the PV modules. Hence, the SBF policy takes the advantage
of the high charging efficiency of the supercapacitor banks.
However, SBF policy suffers from serious performance
degradation later on after the supercapacitor banks are fully
charged, as shown in the test cases for April and July with
4 × 6 or 6 × 6 PV modules. In contrast, UB policy achieves
good results for those test cases with large amount of energy
generation because it unbiasedly allocates generated energy
to all EES banks. The performance of UB policy is quite
close to the proposed SCPL algorithm in some corner cases
because even the best energy allocation does not help much
when the energy generation rate is too high. However, in

general, the proposed SCPL algorithm outperforms UB policy
by fully utilizing the high-efficiency EES banks.

Since the optimal Vcti depends on the energy generation
profile, charge allocation policy, SoCs, and properties of EES
banks, there is no way to determine a generally optimal Vcti.
We observe a fluctuation of the total energy gain up to 20.7%
in case of the different Vcti settings in Tables IV and V. Hence,
it is not surprising that an inappropriate Vcti can be often used
in practice unless the proposed concept is widely accepted. In
contrast, the proposed SCPL algorithm searches and converges
rapidly to the optimal Vcti.

Fig. 11(a) shows the total instantaneous power gain of all
the EES banks in the eight-bank HEES system during the 12
h charge allocation process. The SBF policy performs well at
the beginning but suffers from a huge performance degradation
after all supercapacitor banks are fully charged. Fig. 11(b) and
(c) shows that the average array charging currents of superca-
pacitor banks drop to zero and the currents of battery banks
jump high at 1 PM. The SBF policy harvests less energy than
BBF policy afterward due to higher self-discharge from the
fully charged supercapacitor banks. The UB and BBF policies
allocate charging power uniformly to all the EES banks as
shown in Fig. 8. The proposed SCPL algorithm activates the
supercapacitor banks at 7 AM according to the solar irradiance
level and fully charges the supercapacitor banks at 4 PM.
Fig. 11(a) shows that SCPL algorithm outperforms the other
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Fig. 11. Comparison of (a) total power gain, (b) average array charging
current of supercapacitor banks, and (c) battery banks in the eight-bank HEES
system with the 4 × 6 PV module. Simulated using solar data in Los Angeles
in July.

baseline systems by properly allocating charging power and
determining the CTI voltage.

VI. Conclusion

The HEES system is one of the most promising and practical
ways to achieve a high-performance and low-cost EES system.
This was the first paper that introduces fundamental concepts
of GCA, including the system architecture and formal problem
definition. The GCA problem was formulated as a mixed-
integer nonlinear optimization problem. We proposed a sys-
tematic algorithm for the GCA problem by solving a series of
constrained ICA at each decision epochs with time-dependent
power limits to avoid the greedy decisions. Furthermore, we
proposed an effective way to solve the ICA problem and
achieve a near-optimal solution in an iterative manner. In each
iteration, we solved a standard convex optimization problem in
polynomial time. We performed simulations for HEES systems
using PV modules as the power source and demonstrated
that the proposed algorithm generally improves the energy
harvesting ability by 5% to 25% against the baseline setups.
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